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Fig. 1. AnyLoc enables universal visual place recognition (VPR) across a massively diverse set of environments (anywhere), temporal changes (anytime),
and a wide range of viewpoint variations (anyview). AnyLoc achieves this by aggregating per-pixel features extracted from large-scale pretrained models
(foundation models), without any training or finetuning. In the PCA panels (middle), notice how the features from MixVPR — a state-of-the-art method
trained specifically for VPR — concentrate to a small region of the feature space, losing discriminative ability. On the other hand, AnyLoc uncovers distinct
domains encompassing datasets with similar properties, marked with the same color. Using these domains to construct vocabularies for unsupervised
VLAD aggregation enables AnyLoc to achieve up to 4× higher Recall@1, as seen in the polygonal areas in the radar chart (right), across structured (urban
outdoors, indoors) and unstructured (underwater, aerial, subterranean, visually degraded) environments.

Abstract— Visual Place Recognition (VPR) is vital for robot
localization. To date, the most performant VPR approaches
are environment- and task-specific: while they exhibit strong
performance in structured environments (predominantly urban
driving), their performance degrades severely in unstructured
environments, rendering most approaches brittle to robust real-
world deployment. In this work, we develop a universal solution
to VPR – a technique that works across a broad range of
structured and unstructured environments (urban, outdoors,
indoors, aerial, underwater, and subterranean environments)
without any re-training or finetuning. We demonstrate that
general-purpose feature representations derived from off-the-
shelf self-supervised models with no VPR-specific training are
the right substrate upon which to build such a universal VPR
solution. Combining these derived features with unsupervised
feature aggregation enables our suite of methods, AnyLoc,
to achieve up to 4× significantly higher performance than
existing approaches. We further obtain a 6% improvement
in performance by characterizing the semantic properties of
these features, uncovering unique domains which encapsulate
datasets from similar environments. Our detailed experiments
and analysis lay a foundation for building VPR solutions
that may be deployed anywhere, anytime, and across anyview.
We encourage the readers to explore our project page and
interactive demos: https://anyloc.github.io/ .

I. INTRODUCTION

Visual Place Recognition (VPR) is a fundamental capabil-
ity for robot state estimation and is widely applied in robotic
systems such as autonomous cars, other uncrewed (aerial,
terrestrial, and underwater) vehicles, and wearable devices.
Despite significant advancements in VPR over the years,

*Equal Contribution

achieving out-of-the-box applicability across a diverse set of
scenarios remains challenging; this is critical to bootstrap a
mobile robot anywhere, anytime, and across anyview.

State-of-the-art (SOTA) approaches are specifically trained
for VPR and exhibit strong performance on environments
similar to those found in the training dataset (for instance, ur-
ban driving). However, when the same methods are deployed
in an environment where the extracted visual features differ
substantially (such as underwater or aerial), their perfor-
mance drops sharply (Fig. 1). In this context, we address the
question, “How can one design a universal VPR solution?”
This entails generating place representations from a general
model, which is pre-trained in an embodiment-, task- and
environment-agnostic manner and can be readily adjusted to
its specific deployment environment. Specifically, a universal
VPR solution must be applicable anywhere (seamlessly oper-
ates across any environment, including aerial, subterranean,
and underwater), anytime (robust to temporal changes in the
scene, such as day-night or seasonal variations, or to transient
objects), and across anyview (robust to perspective viewpoint
variations, including diametrically opposite views).

We rethink the VPR problem from the lens of (visual)
feature representations derived from large-scale pretrained
models (coined foundation models [1]). We show that, de-
spite not being trained for VPR, these models encode rich
visual features that serve as the right substrate upon which a
universal VPR solution may be built. Our approach, termed
AnyLoc, involves a careful selection of models and visual
features with the right invariance properties and blends

https://anyloc.github.io/
https://nik-v9.github.io/
https://theprojectsguy.github.io/
https://jaykarhade.github.io/
https://krrish94.github.io/
https://theairlab.org/team/sebastian/
https://robotics.iiit.ac.in/faculty_mkrishna/
https://researchers.adelaide.edu.au/profile/sourav.garg
https://www.ri.cmu.edu/
https://robotics.iiit.ac.in//
https://www.csail.mit.edu/
https://www.adelaide.edu.au/aiml/
https://anyloc.github.io/


them with prevailing local-aggregation approaches in the
VPR literature [2]–[5], resulting in all of the aforementioned
desirable characteristics of a universal VPR solution.

Our key takeaways are as follows:
• AnyLoc emerges as a new baseline VPR method that

works universally across 12 datasets exhibiting massive
diversity along the axes of place, time, and perspective;

• Self-supervised features (such as DINOv2 [6]) and
unsupervised aggregation methods (like VLAD [7] &
GeM [8]) are both crucial for strong VPR performance.
Applying these aggregation techniques on per-pixel fea-
tures offers substantial performance gains over the direct
use of per-image features from off-the-shelf models.

• Characterizing the semantic properties of the aggregated
local features uncovers distinct domains in the latent
space, which can further be used to enhance VLAD
vocabulary construction; in turn boosting performance.

We evaluate AnyLoc on an extensive and diverse range
of datasets (urban, indoors, aerial, underwater, subterranean)
across challenging VPR conditions (day-night and seasonal
variations, opposing viewpoints), establishing a strong base-
line for future research towards universal VPR solutions.

II. VPR: OVERVIEW, TRENDS & LIMITATIONS

VPR – Problem definition: VPR is often cast as an
image retrieval problem [9] that comprises two phases. In
the indexing phase, a reference map (image database)
is gathered from a robot’s onboard camera when travers-
ing through an environment. In the retrieval phase, given
a query image—captured during a future traverse—VPR
entails retrieving the closest match to this query image in
the reference map. There exists a variety of VPR methods
and alternative problem formulations [3], [10]–[13]; in this
work, we focus on global descriptors, which offer the best
tradeoff between accurate matching and search efficiency [7],
[9], [14]. This is in contrast to local descriptor methods,
which are computationally intensive to match, particularly
over larger databases.

Researchers have explored various training objec-
tives [15]–[18], aggregation techniques [2], [8], [19], and
transfer learning [20]–[22] to improve global descriptor-
based VPR. High performance of most of these modern
approaches can be attributed to large-scale training on
VPR-specific data. Powered by deep learning and the Pitts-
250k dataset [23], weakly-supervised contrastive learning in
NetVLAD [2] led to substantial improvements over classical
hand-crafted features. Following suit, the Google-Landmark
V1 (1 million images) and V2 datasets [24] (5 million
images) enabled training DeLF [25] and DeLG [26] for large-
scale image retrieval. Likewise, the Mapillary Street-Level
Sequences (MSLS) dataset, containing 1.6 million street
images, substantially boosted VPR performance by tapping
orders of magnitude larger data from urban and suburban
settings [27]–[29]. More recently, CosPlace [18] coupled
classification-based learning with the San Francisco XL
dataset comprising 40 million images having GPS & heading.

The current SOTA, MixVPR [30], proposed an MLP-based
feature mixer, trained on the GSV-Cities dataset [31] – a
curated large-scale dataset with 530,000 images spanning
62,000 places worldwide.

This trend of scaling up VPR training is mostly driven by
easily-available positioning data for outdoor environments,
which leads to SOTA performance in urban settings, but does
not generalize to indoor and unstructured environments.
As shown in Fig. 1, the PCA projections of descriptors
extracted by SOTA methods concentrate to a narrow region
in the feature space, diminishing their discriminative abilities
in environments outside the training distribution. Apart from
environment-specificity, prior methods have tackled specific
challenges in isolation, such as extreme temporal variations
in scene appearance [22], [32] and camera viewpoint [33],
[34]. This data- and task-specificity of current VPR ap-
proaches limits their out-of-the-box applicability, which may
be mitigated by task-agnostic learning. Hence, in this work,
we analyze the design space of VPR using web-scale self-
supervised visual representations and develop a universal
solution that does not assume any VPR-specific training.

III. ANYLOC: TOWARDS UNIVERSAL VPR

To the best of our knowledge, our approach, AnyLoc,
is the first VPR solution that exhibits anywhere, anytime,
and anyview capabilities (see Fig. 1). AnyLoc is guided
by two crucial insights (see Section V for details) that
emerged when exploring the design space of VPR solutions
through the lens of foundation model features: (a) existing
VPR solutions are task-specific and perform poorly when
evaluated in environments outside the training distribution;
and (b) while per-pixel features from off-the-shelf foundation
models [6], [35], [36] demonstrate remarkable visual and
semantic consistency [5], [37]–[39], the per-image features
are suboptimal when used as-is for VPR. Therefore, a
careful investigation is needed to transfer these per-pixel
invariances to the image level for recognizing places, where
recent approaches in this direction are only limited to small-
scale indoor settings or vision-language use-cases [40], [41].
In this context, for designing AnyLoc, we investigate the
following questions:

A. What foundation models are best suited to VPR?
B. How do we extract VPR-suited local features from these

general-purpose models?
C. How do we aggregate local features to describe places?
D. How to construct vocabularies that generalize across

datasets?

A. Choice of Foundation Model

There exist three broad classes of self-supervised foun-
dation models that extract task-agnostic visual features:
(a) joint embedding methods (DINO [35], DINOv2 [6]), (b)
contrastive learning methods (CLIP [36]), and (c) masked
autoencoding approaches (MAE [42]). Joint embedding
methods need a stable training recipe; DINO is trained on
ImageNet [43] through global image-level self-supervision,
while DINOv2 is trained on a much larger, carefully-curated



Fig. 2. Point correspondences (as markers) & similarity maps show the ro-
bustness of foundation model features to various VPR challenges: (top)
text and scale change, (middle) perceptually aliased features and viewpoint
shift, and (bottom) low illumination combined with opposing viewpoint.
The value facet has the highest contrast between the background and the
matched points, which is vital for discarding distractors within an image.

dataset with joint image-/token-level losses. These meth-
ods offer the highest level of performance; followed by
contrastive learned approaches like CLIP [36], which is
trained on millions of aligned image-text pairs. In our initial
experiments, we found all these models to perform better
than MAE [42], which only has token-level self-supervision.
These findings are corroborated in [5], [6], [37], highlighting
the benefits of learning long-range global patterns captured
by joint embedding methods. Therefore, AnyLoc employs
DINO & DINOv2 vision transformers for extracting features.

B. Choice of Features

Another important design choice is how we extract visual
features from these pretrained vision transformers (ViT) [44].
Rather than extract per-image features1 (i.e., one feature
vector for the entire image), we observe that per-pixel
features enable fine-grained matching and result in superior
performance. Each layer in the ViT has multiple facets
(query, key, value, and token) from which features
may be extracted. Following [39], we extract features from
intermediate layers across the ViT and discard the CLS token.
In Fig. 2, we illustrate this applicability of the dense ViT
features for VPR by assessing the robustness of local feature
correspondences. We select a point on a database image,
match it with all (per-pixel) features from the query image,
and plot heatmaps indicating the likelihood these points
correspond. Notice how the correspondences are robust even
in the presence of semantic text and scale change (first row),
perceptual aliasing and viewpoint shift (second row), and low
illumination combined with opposing viewpoint (third row).

Comparing the similarity maps in Fig. 2, notice how the
value facet exhibits the largest contrast between the
matched points and the background, which is crucial for
robustness against distractors within an image. Upon fur-
ther analysis across layers (Fig. 3), we observe an interesting
trend. The earlier layers of the ViT (top rows), especially the
key and query facets, exhibit a high positional encoding
bias, while the value facet of deeper layers has the
sharpest contrast in the similarity map. We further justify
our selection of layer & facet quantitatively in Section V-C.2.

1In a ViT, per-image features are encoded in a special token, CLS, and
interpreted as a summary of the image content.

Fig. 3. Qualitative ablation comparing the absolute-scale similarity maps of
features from different DINOv2 ViT-G layers and facets. Layer 31 value
facet has the sharpest contrast in the similarity map, which is crucial for
robustness against distractors within an image.

C. Choice of Aggregation Technique

The next design choice to make towards our VPR pipeline
entails selecting an aggregation technique that determines
how local features are grouped together to describe sec-
tions of an image and, eventually, an environment. While
prior work has used the CLS token directly for image re-
trieval [6], [41], [45], we observed contradictory trends under
a universal retrieval setting (i.e., retraining or finetuning is
prohibited). We comprehensively explore multiple unsu-
pervised aggregation techniques: Global Average Pooling
(GAP) [46], Global Max Pooling (GMP) [47], Generalized
Mean Pooling (GeM) [8], and the soft & hard assignment
variants of VLAD [7].

For an input image of size H ×W , and a per-pixel feature
fi ∈ RD, we define a global descriptor as:

FG =

(
H×W

∑
i=1

fi
p

) 1
p

(1)

where p = 1, p = 3, and p → ∞ represent GAP, GeM, and
GMP respectively.

For VLAD variants, we cluster all the features from the
database images to obtain N cluster centers. This forms our
vocabulary. The global VLAD descriptor is then calculated
as the sum of residuals per cluster center k, as below:

FVk =
N×H×W

∑
i=1

αk( fi)( fi − ck) (2)

where αk(xi) is 1 if fi is assigned to cluster k and 0 otherwise.
In the soft-assignment variant of VLAD, αk( fi) indicates the
assignment probability and lies between 0 and 1. Follow-
ing [48], we perform intra-normalization, concatenation, and
inter-normalization to obtain the final VLAD descriptor FV .

D. Choice of Vocabulary

For vocabulary-based aggregation techniques, we con-
struct our vocabulary with the goal of characterizing the
distinct semantic properties of globally pooled local
features across diverse environments. Prior work based
on VLAD has either used a global vocabulary based on
representative places & features [7], a reference map-specific
one [48], or a learnt [2] vocabulary based on the training



TABLE I
UNSTRUCTURED ENVIRONMENTS USED IN EVALUATION

Dataset NDb NQ Traj. Span Loc. Radius Type

Hawkins [49] 65 101 282 m 8 m
Laurel Caverns [49] 141 112 102 m 8 m
Nardo-Air 102 71 700 m / 1 km2 60 m
VP-Air [50] 12.7k 2.7k 100 km 3 frames
Mid-Atlantic Ridge [51] 65 101 18 m 0.3 m

dataset. These approaches work well where domain- or map-
specific data is abundant and task-specific training is feasible.
However, a more scalable approach is to leverage the open-
set semantic attributes encoded in the foundation model
features to determine the appropriate domain and feature
vocabulary. Hence, we use vocabulary-independent global
descriptors (DINOv2-GeM) and their (unsupervised) PCA
projection to define vocabularies for VLAD aggregation.

From Fig. 1, we observe that projecting the global
descriptors using PCA uncovers distinct domains in the
latent space, which characterizes datasets having similar
properties, namely: Urban, Indoor, Aerial, SubT, De-
graded, and Underwater. Further demonstrating discrimina-
tive robustness, although the SubT and Degraded domains
have similar imagery types, they are dispersed to distinct
regions, whereas the visually degraded indoor domain is
concentrated relatively close to the indoor collection. Lastly,
we can observe that the projected features for the query
images are close to the projected features of their respective
database images2. Hence, using the PCA-based segregation,
we construct the visual vocabularies for VLAD in a domain-
specific manner (further justified in Section V-B.1).

IV. EXPERIMENTAL SETUP

A. Datasets

There exist several VPR datasets where the composition
of benchmarks is influenced by either the end task, i.e.,
urban data for Geo-localization [3] or the evaluation aspects
of viewpoint variability [12]. We evaluate on datasets from
both structured and unstructured environments, offering un-
precedented diversity in terms of environments (anywhere),
coupled with a range of temporal (anytime) and camera
viewpoint3 (anyview) variations. We define structured en-
vironments as organized places composed of human-built
structures that are commonplace in applications such as
autonomous driving and indoor robotics. These represent the
typical images collected and shared by humans on the web.
On the other hand, unstructured environments represent in-
the-wild scenarios where the objects and types of images
encountered are not commonly observed.

2The PCA transform is computed solely from the database images, and
does not make use of the query images, for fair analysis.

3The viewpoint shifts range from < 90◦ with minimal (Oxford, St
Lucia) and moderate shifts (Pitts30K, Baidu) to > 90◦ with extreme shifts
(orthogonal in Nardo-Air and opposite in Hawkins, Laurel). > 90◦ criterion
for the opposite-viewpoint datasets refers to a 180◦ orientation change in
observing a place from a nearby but not the same 3D position [9], [33].

TABLE II
STATE-OF-THE-ART BASELINES USED FOR COMPARISON

Method Backbone Training Dataset Supervision

NetVLAD [2], [3] ResNet-18 Pitts-30k VPR - Contrastive
CosPlace [18] ResNet-101 SF-XL VPR - Classification
MixVPR [30] ResNet-50 GSV-Cities VPR - Contrastive

CLIP [36], [59] ViT-bigG-14 Laion 2B Image-Caption Pairs
DINO [35] ViT-S8 ImageNet Self-Supervised
DINOv2 [6] ViT-G14 LVD-142M Self-Supervised

1) Structured Environments: We used six benchmark in-
door and outdoor datasets, exhibiting challenges like drastic
viewpoint shifts, perceptual aliasing, and substantial visual
appearance change. This includes Baidu Mall [52], Gardens
Point [53], [54], 17 Places [55], Pittsburgh-30k [23], St
Lucia [56], and Oxford RobotCar [57], where the ground
truth localization radius is 10 meters, 2 frames, 5 frames, 25
meters, 25 meters, and 25 meters, respectively. For Oxford
RobotCar, we use a subsampled version of the Overcast Sum-
mer and Autumn Night traverses, following HEAPUtil [58].

2) Unstructured Environments: While our structured en-
vironments enable us to benchmark with respect to existing
VPR techniques, to truly assess robustness and versatility,
we evaluate on a number of unstructured environments,
including aerial, underwater, visually degraded, and subter-
ranean environments4. Table I provides an overview of these
unstructured datasets, which exhibit challenging distribution
shifts, visually degraded long corridors, satellite & aerial
imagery covering various landscapes, low illumination, and
seasonal variations. Nardo-Air R aligns the orientation of
drone imagery with the satellite map.

B. Benchmarking & Evaluation

We use Recall@K [12] as the evaluation metric (a higher
recall score indicates superior performance). All experiments
use the same random seed (42) and GPU hardware (NVIDIA
RTX 3090) for consistency and reproducibility.

1) State-of-the-art Baselines: We evaluate AnyLoc against
a variety of VPR methods such that it encompasses variations
in terms of VPR-specific training, global image representa-
tion, type of supervision, backbone models, and the scale
and nature of training data. We include three specialized
baselines, which are trained for the VPR task on large-scale
urban datasets, and three new baselines that use the CLS
token of the foundation models, as summarized in Table II.

2) AnyLoc - Nomenclature and Model Specifications:
All names are of the form AnyLoc-aggregation-model,
where aggregation is one of VLAD, GeM; and model
is one of DINO, DINOv2. For AnyLoc-VLAD-DINO, we
use the ViT-S8 layer 9 key facet features and 128 clusters
for VLAD. Likewise, for AnyLoc-GeM and AnyLoc-VLAD-
DINOv2, we use ViT-G14 layer 31 value facet features,
with 32 clusters for VLAD.

4Models such as DINOv2 and CLIP are trained on web-scale datasets, and
consequently, will likely have seen structured environments similar to those
in Table III. Therefore, the true test for these models is their performance
on unstructured environments, which are highly unlikely to have featured
in any of the training subsets for these models.



TABLE III
PERFORMANCE COMPARISON ON BENCHMARK STRUCTURED ENVIRONMENTS

Baidu Mall Gardens Point 17 Places Pitts-30k St Lucia Oxford Average

Methods R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

NetVLAD [2] 53.1 70.5 58.5 85.0 61.6 77.8 86.1 92.7 57.9 73.0 57.6 79.1 62.5 79.7
CosPlace [18] 41.6 55.0 74.0 94.5 61.1 76.1 90.4 95.7 99.6 99.9 95.3 99.5 77.0 86.8
MixVPR [30] 64.4 80.3 91.5 96.0 63.8 78.8 91.5 95.5 99.7 100 92.7 99.5 83.9 91.7

CLIP-CLS [36] 56.0 71.6 42.5 74.5 59.4 77.6 55.0 77.2 62.7 80.7 46.6 60.7 53.7 73.7
DINO-CLS [35] 48.3 65.1 78.5 95.0 61.8 76.4 70.1 86.4 45.2 64.0 20.4 46.6 54.1 72.3
DINOv2-CLS [6] 49.2 64.6 71.5 96.0 61.8 78.8 78.3 91.1 78.6 89.7 47.1 58.1 64.4 79.7
AnyLoc-GeM-DINOv2 50.1 70.6 88.0 97.5 63.6 79.6 77.0 87.3 76.9 89.3 92.2 97.9 74.6 87.0
AnyLoc-VLAD-DINO 61.2 78.3 95.0 98.5 63.8 78.8 83.4 92.0 88.5 94.9 82.2 99.0 79.0 90.2
AnyLoc-VLAD-DINO-PCA 62.3 81.2 91.5 99.5 63.3 78.8 82.8 90.8 87.6 94.3 82.7 96.3 78.4 90.1
AnyLoc-VLAD-DINOv2 75.2 87.6 95.5 99.5 65.0 80.5 87.7 94.7 96.2 98.8 99.5 100 86.5 93.5
AnyLoc-VLAD-DINOv2-PCA 74.9 89.4 96.0 99.5 64.8 81.0 86.9 93.8 96.4 99.5 96.9 100 86.0 93.9

TABLE IV
PERFORMANCE COMPARISON ON UNSTRUCTURED ENVIRONMENTS

Hawkins Laurel Caverns Nardo-Air Nardo-Air R VP-Air Mid-Atlantic Ridge Average

Methods R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

NetVLAD [2] 34.8 71.2 39.3 71.4 19.7 39.4 60.6 85.9 6.4 17.7 25.7 53.5 31.1 56.5
CosPlace [18] 31.4 59.3 24.1 47.3 0 1.4 91.6 100 8.1 14.2 20.8 40.6 29.3 43.8
MixVPR [30] 25.4 60.2 29.5 67.0 32.4 42.2 76.1 98.6 10.3 18.3 25.7 60.4 33.2 57.8

CLIP-CLS [36] 33.0 67.0 36.6 66.1 42.2 70.4 62.0 97.2 36.6 52.8 25.7 51.5 39.4 67.5
DINO-CLS [35] 46.6 84.8 41.1 57.1 57.8 90.1 84.5 100 24.0 38.4 27.7 49.5 47.0 70.0
DINOv2-CLS [6] 28.0 62.7 40.2 65.2 73.2 88.7 71.8 91.6 45.2 59.9 24.8 48.5 47.2 69.4
AnyLoc-GeM-DINOv2 53.4 83.9 58.9 86.6 76.1 83.1 57.8 97.2 38.3 53.8 14.8 49.5 49.9 75.7
AnyLoc-VLAD-DINO 48.3 84.8 57.1 79.5 43.7 54.9 94.4 100 17.8 28.7 41.6 66.3 50.5 69.0
AnyLoc-VLAD-DINOv2 65.2 94.1 61.6 90.2 76.1 94.4 85.9 100 66.7 79.2 34.6 61.4 65.0 86.5

V. EXPERIMENTS, RESULTS, AND ANALYSES

We first evaluate AnyLoc against SOTA VPR techniques
and report results across structured & unstructured environ-
ments, viewpoint shifts, and temporal appearance variations.
We further present a comparative analysis of the specialized
baselines and variants directly using the CLS token (i.e.,
per-image features). We then present a detailed vocabulary
analysis followed by insights into the design of AnyLoc.
Lastly, we demonstrate the benefits of self-supervised ViTs
by contrasting them with existing VPR-trained ViTs.

A. State-of-the-art Comparison

1) Structured Environments: Table III highlights the gen-
eral applicability of the AnyLoc methods on structured
environments, in particular, the Indoor and Urban domains.
AnyLoc-VLAD-DINOv2 achieves the highest recall across
all the Indoor datasets while outperforming MixVPR (the
second best) and CosPlace by 5% and 20% on average
(R@1). Interestingly, foundation models’ CLS descriptors
(while being inferior to our method) are competitive with
baselines such as CosPlace and NetVLAD, e.g., CLIP out-
performs them respectively by 15% and 3% on Baidu Mall.
Through our proposed use of feature aggregation for founda-
tion models, we observe that simply using GeM pooling over
DINOv2 features (i.e., AnyLoc-GeM-DINOv2) significantly
improves performance over the DINOv2 CLS token. This

is further improved by AnyLoc-VLAD, which beats all prior
approaches on these datasets. In the Urban case – which
well aligns with the training distribution of the baselines
supervised specifically for VPR on urban data – we observe
that AnyLoc-VLAD is inferior by 3-4% on daytime conditions
of Pitts30k and St Lucia, but it achieves state-of-the-art for
day-night variations on Oxford. We further showcase that a
PCA-Whitening of the AnyLoc-VLAD descriptors using the
domain-specific database enables similar SOTA performance
while having a 100× smaller embedding size (49k to 512).

2) Unstructured Environments: Table IV highlights the
fragility of the specialized baselines and shows that
AnyLoc outperforms all the baselines by a large margin
in these challenging unstructured environments. Even
the CLS methods outperform VPR-specialized baselines,
e.g., DINOv2-CLS exceeds MixVPR by 41% on Nardo-Air
and 35% on VP-Air under strong viewpoint variations. The
AnyLoc methods consistently outperform both the specialized
and the CLS baselines, where the best performers in the
respective categories, i.e., MixVPR and DINOv2-CLS, lag
behind AnyLoc-VLAD by 32% and 18% on average (R@1).

3) Temporal & Viewpoint Changes: We further demon-
strate the robustness of AnyLoc for anytime and anyview
VPR. We evaluate multiple datasets where revisiting a place
at different time intervals leads to variations in scene appear-
ance (anytime). In comparison to the SOTA VPR baselines,



TABLE V
EFFECT OF VOCABULARY TYPE ON R@1 FOR AnyLoc-VLAD-DINOv2

Vocabulary Type Indoor Urban Aerial

Global 77.0 93.9 57.1
Structured 77.0 93.3 56.4
Unstructured 74.8 89.0 75.8
Map-Specific 78.0 92.3 62.9
Domain-Specific 78.6 94.4 76.2

MixVPR/CosPlace, we observe the following gains using
AnyLoc-VLAD on different temporal changes: 5/11% on
day-night cycles affecting outdoors (Oxford), indoors (17
Places), and mixture (Gardens Point); 9/8% on seasonal
shifts (Oxford); 21/28% on long period jumps (2022 vs. 2023
for Nardo-Air, 2015 Vs. 2020 for the Mid-Atlantic Ridge).
A similar trend is observed for viewpoint shifts (anyview),
where we test on datasets that vary both in terms of the
view-type, e.g., street vs aerial, and the shift-type. AnyLoc-
VLAD outperforms MixVPR/CosPlace on orientation-based
shifts by 21/30% and extreme 90◦/180◦ shifts by 39/49%.

4) Specialized Baselines: The average recall of
NetVLAD, CosPlace, and MixVPR confirms the general
trend of better performance in task-specific baselines
with an increasing scale of urban training data,
combined with innovations in learning objective (CosPlace)
and learnable aggregation (MixVPR). Additionally, we
observe one peculiar failure case of CosPlace on the
Nardo-Air dataset. No correct matches were found under the
combined effect of out-of-distribution (aerial) and extreme
viewpoint (90 degrees) shifts. Visual inspection revealed
that all queries incorrectly matched to a handful of reference
images having similar orientation of fields and roads.

5) CLS vs. Aggregation (AnyLoc): When the foundation
models are used with local feature aggregation instead
of the CLS token, we observe significant performance
jumps: DINOv2-based AnyLoc-GeM and AnyLoc-VLAD
outperform DINOv2-CLS by 9%/2% and 23%/18% respec-
tively on structured/unstructured environments. Furthermore,
the average recall of the CLS token-based global descriptors
(CLIP, DINO & DINOv2) indicates their superiority to
specialized baselines on unstructured environments.

B. Vocabulary Analysis

1) Vocabulary Source: Table V shows how the vocab-
ulary source used for VLAD influences recall, where
domain-specific vocabulary leads to the best recall. We
construct multiple VLAD vocabularies using different sub-
sets of the 12 datasets used in this work and report average
recall per domain. As described in Section III-D, the subsets
for different domains are obtained through a qualitative PCA
visualization (see Fig. 1), which is quantitatively justified
through the results presented here. The other vocabulary
sources that we compare against are: Global using all 12
datasets; Structured using 3 indoor and 3 urban datasets;
Unstructured using the complement set of structured; and

TABLE VI
ANALYSING INTRA-DOMAIN TRANSFERABILITY OF

AnyLoc-VLAD-DINOv2 VOCABULARIES

Vocabulary Evaluation Map-Specific Vocab-Transfer
Dataset Dataset Recall@1 Recall@1

Baidu Mall (0.7k) 17 Places (0.4k) 64.5 63.8
Gardens Point (0.2k) 98.0 94.5

VP-Air (2.7k) Nardo-Air (0.1k) 57.8 64.8
Nardo-Air R (0.1k) 70.4 88.7

Pitts-30k (10k) Oxford (0.2k) 94.8 99.0

VP-AirNardo-Air

St LuciaPitts-30k

Baidu Mall 17 Places

Reference ReferenceQuery Query

Fig. 4. VLAD cluster assignment visualizations of the reference-query pairs
highlight the intra-domain consistency of the domain-specific vocabulary.
Similar colors across images of a specific domain indicate matched clusters.

Map-specific using only the reference database of a particular
dataset. In the aerial domain, domain-specific achieves 13%
over map-specific and 19% over global vocabulary.

2) Consistency: Fig. 4 showcases the robust intra-
domain consistency of the domain-specific vocabulary,
further justifying the high performance of AnyLoc-VLAD.
Specifically, we visualize the cluster assignments (with K =
8) for the local features using the domain-specific vocabulary.
In the Urban domain, the roads, pavements, buildings, and
vegetation are consistently assigned to the same cluster
across changing conditions and places. For the Indoor do-
main, we can observe intra-domain consistency for the floor
& ceiling, while there is intra-place consistency for the text
signs and furniture. For the Aerial domain, it can be observed
that roads, vegetation, and buildings are assigned to unique
clusters across both the rural and urban images.

We further demonstrate that this robust consistency
within a domain enables us to deploy AnyLoc-VLAD
in target environments with small reference databases
(maps) that lack information richness. For datasets belong-
ing to a given domain, we pick the largest reference database
to form the vocabulary and evaluate on other datasets from
that domain. In Table VI, for Aerial and Urban domains, we
can observe that 7-18% higher R@1 can be achieved when
using a larger source of vocabulary as compared to just using
the target dataset’s own smaller map, thus demonstrating the
transferability of vocabularies within the same domain. For
the Indoor domain, the drop in performance is either due to
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Fig. 5. Design Choices for AnyLoc-VLAD: (a) Performance scales with the model size but saturates at ViT-L. (b) Performance peaks at intermediate
layers instead of the final layer for both DINO & DINOv2. (c) On average, key & value perform the best respectively for DINO & DINOv2.

TABLE VII
ANALYSIS COMPARING THE RECALL@1 & DESCRIPTOR

DIMENSIONALITY ACROSS VARYING AGGREGATION METHODS

DINO DINOv2

Aggregation Methods Baidu ↑ Oxford ↑ Dim ↓ Baidu ↑ Oxford ↑ Dim ↓

Global Average Pool (GAP) 29.6 28.8 384 41.6 78.5 1536
Global Max Pool (GMP) 34.9 38.2 384 64.4 74.9 1536
Generalized Mean Pool (GeM) 34.7 47.6 384 50.1 92.2 1536
Soft Assignment VLAD 33.8 28.3 49152 40.3 82.2 49152
Hard Assignment VLAD 60.9 64.9 49152 71.5 94.8 49152

a relatively limited size of the largest reference database or
the large diversity across datasets, e.g., shops in Baidu Mall
compared to offices in the other two datasets. Nevertheless,
when using this unified diverse vocabulary from all the
datasets in the indoor domain, the overall recall is better
than using map-specific vocabularies, as shown in Table V.

C. Insights into AnyLoc Design

We present insights on varying parameters within AnyLoc,
using two datasets, Baidu Mall & Oxford, which are repre-
sentative of the typical VPR challenges:

1) ViT Architecture: Fig. 5 a showcases that larger
DINOv2 ViT backbones lead to better performance,
where the performance tends to saturate at ViT-L (300 mil-
lion parameters). Since, on average, ViT-G performs better
than ViT-L, we use ViT-G for DINOv2. For DINO, we use
ViT-S, which is the only available architecture.

2) ViT Layers & Facets: Fig. 5 b shows that peak per-
formance is achieved through deeper layers, somewhere
between the middle and the last layer. For a smaller ViT
architecture (DINO ViT-S on the left), it can be observed
that middle layers have higher performance on Oxford. This
can be attributed to their higher positional encoding bias,
which is helpful under no viewpoint shift across reference-
query pairs. Hence, aligning with the findings presented in
Section III-B, we choose 9 and 31 as our operating layers
for DINO and DINOv2, respectively.

In Fig. 5 c, the key & value facets consistently achieve
high recall for DINO & DINOv2 respectively. Although
query and key facets perform better on Oxford when
using DINO (left), this gap diminishes when using DINOv2
(right). The performance difference between the query &
value gets inverted from Baidu to Oxford; indicating a
high positional bias in the query & key, leading to poor
performance under the significant viewpoint shift in Baidu.

TABLE VIII
ANALYSIS COMPARING THE RECALL@1 OF VPR-TRAINED VITS TO

SELF-SUPERVISED VITS

Method Indoor Urban Aerial SubT & D Underwater

ViT-B CosPlace 62.9 80.7 26.3 26.5 18.8
ViT-B CosPlace-VLAD 68.5 82.9 38.4 37.5 23.8
ViT-S AnyLoc-VLAD-DINO 72.9 79.6 47.8 52.7 41.6
ViT-B AnyLoc-VLAD-DINOv2 77.0 82.6 53.6 60.2 35.6
ViT-G AnyLoc-VLAD-DINOv2 78.0 92.3 62.9 63.4 34.6

3) Aggregation Methods: In Table VII, we compare
the various unsupervised local feature aggregation tech-
niques as discussed in Section III-C and observe that hard
assignment-based VLAD works the best. We can further
see that the vocabulary-free methods provide an optimal
trade-off between performance and storage, where GeM
pooling tends to do the best. Also, we observed that hard
assignment is typically 1.4 times faster than soft assignment.

D. Self-supervised vs VPR-supervised ViT

Table VIII shows that the high performance of AnyLoc-
VLAD is not a consequence of simply using a large
ViT but an outcome of self-supervised training on large-
scale curated data, which leads to generality in the
underlying features [6]. In particular, we compare a ViT
trained specifically for VPR (i.e., CosPlace [18]) against
those based on self-supervision (i.e., DINO & DINOv2).
For the VPR-supervised CosPlace, we include the authors’
GeM pooling-based ViT-B model along with its adapted
version that uses a VLAD layer (K = 128) on top of ViT-
B’s 6th layer (which performed better than other layers). For
self-supervised methods, we include AnyLoc-VLAD variants:
DINO ViT-S, DINOv2 ViT-B and ViT-G. All VLAD-based
methods in these comparisons use map-specific vocabu-
lary. Comparing ViT-B-based methods, we can observe that
even though CosPlace’s overall performance improves with
VLAD, AnyLoc-VLAD-DINOv2 outperforms it by 8-13%.
Interestingly, even ViT-S based AnyLoc-VLAD-DINO outper-
forms ViT-B-based CosPlace-VLAD by 4-18% while using
4× fewer parameters. The only exception to these trends is
in the urban domain, where CosPlace-VLAD outperforms
ViT-S and ViT-B based AnyLoc-VLAD, which is justified by
CosPlace’s VPR-specific training on urban data. Despite this,
AnyLoc-VLAD-DINOv2 ViT-G surpasses all other methods.



VI. CONCLUSION

This paper introduces AnyLoc – a significant step towards
universal VPR. Driven by the limitations of environment- and
task-specific VPR techniques, and the fragility of per-image
features extracted from foundation models, we propose to
blend the per-pixel features computed by these models with
unsupervised feature aggregation techniques like VLAD and
GeM. Through our benchmarking and analyses on a diverse
suite of datasets, we shed light on the brittleness of current
large-scale urban-trained VPR approaches and show that
AnyLoc outperforms the previous state-of-the-art by up to
4×. This work stretches the applicability scope of VPR and,
in turn, robot localization to anytime, anywhere & under
anyview, which is crucial to enable downstream capabilities,
such as robot navigation in the wild.
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APPENDIX

A1. CONTRIBUTION STATEMENT

Nikhil Keetha conceived the idea and led the project.
Responsible for initial code development, writing major
sections of the paper, and producing figures, tables & videos.

Avneesh Mishra implemented vital components, includ-
ing the foundation model feature extraction and modular
scripts, to run experiments at a large scale. Responsible for
running the ablation experiments, writing the first draft of
the results section, and producing qualitative visualizations
& the Hugging Face demo.

Jay Karhade scaled the evaluation to a diverse suite of
unstructured environments, implemented the vocabulary ab-
lations, and performed explorations into various foundation
models, including SAM. Responsible for the website, re-
trieval visualizations, and diverse suite of interactive demos.

Krishna Murthy was actively involved in brainstorming
and critical review throughout the project. Responsible for
the exploration of self-supervised visual foundation models.
Wrote & proofread sections of the paper.

Sebastian Scherer pushed us towards evaluating the prac-
ticality of current VPR systems in unstructured environments
and developing a universal VPR system. Suggested a vital
paper restructuring to ensure the critical message and insights
are easily parsable. Sebastian provided compute resources for
initial explorations and ablations.

Madhava Krishna was involved in initial brainstorming
discussions and provided feedback throughout the develop-
ment. Suggested revisions for sections of the paper. Madhav
also provided most of the compute for the experiments
conducted in this work.

Sourav Garg provided resourceful visual place recogni-
tion perspectives and critical thoughts in the brainstorming
sessions, which led to clear insights into the applicability
of foundation model features for VPR. Wrote and proofread
sections of the paper.

A2. VOCABULARY SPECIFICATIONS

To ensure near-similar reference image frequencies across
datasets, for the Urban vocabulary, we use all images from
Oxford & St Lucia, but only every 4th image for the larger
Pitts-30k dataset. For Aerial, we use the whole Nardo-
Air database, but only every 2nd image for VP-Air. To
generate the Indoor, SubT, Degraded, and Underwater
vocabularies, we use all respective reference databases.

A3. DATASET DETAILS

In this section, we provide detailed descriptions of the 12
diverse datasets used for evaluation.

A. Structured Environments

a) Baidu Mall: This visual localization dataset consists
of images captured within a mall with varying camera
poses. The dataset provides groundtruth location and 3D
pose of an image, making it suited for both 6-Degrees
of Freedom (DoF) Localization and VPR testing. We use
the entire dataset consisting of 2292 query images & 689
reference images for evaluation. This mall dataset presents
interesting and challenging properties, including perceptually
aliased structures, distractors for VPR (such as people), and
semantically rich information, such as billboards and signs.

b) Gardens Point: This dataset contains two traverses
through the Gardens Point campus of Queensland University
of Technology (QUT) captured at different times of the
day, i.e., day and night. Both the database and query tra-
verses contain 200 images, respectively. The drastic lighting
changes and transitions from indoor to outdoor scenarios
make it a difficult VPR dataset.

c) 17 Places: This indoor dataset consists of traverse
collected within buildings at York University (Canada) and
Coast Capri Hotel (British Columbia). The reference and
query traverses consist of 406 images. The high clutter,
change in lighting conditions, and semantically rich infor-
mation make this dataset interesting.

d) Pittsburgh-30k: This benchmark VPR dataset con-
sists of images collected at various locations and poses
throughout downtown Pittsburgh. We use the test split con-
sisting of 10,000 database images and 6816 query images.
This dataset is challenging due to the presence of drastic
viewpoint shifts, a large variety of geometric structures such
as buildings, and distractors such as cars and pedestrians.



e) St Lucia: This dataset consists of daytime traverses
collected using a stereo camera pair on a car, where the
traverses span a total distance of 9.5 km. The reference
traverse consists of 1549 images, while the query traverse
consists of 1464 images. A large number of loop closure
events, reverse traverses, shadows, and vegetation make this
dataset challenging.

f) Oxford RobotCar: This dataset consists of Oxford
City traverses, which showcase shifts in seasonal cycles and
daylight. We use a subsampled version of the Overcast Sum-
mer and Autumn Night traverses, similar to HEAPUtil [58].
The original traverses are subsampled with an approximate
spacing of 5 meters to obtain a total of 213 frames in the
summer traverse and 251 frames in the autumn night traverse
with a total distance spanning 1.5 Km. This dataset presents
a challenging shift in visual appearance caused by the time
of day and seasonal shifts.

B. Unstructured Environments

a) Hawkins: This dataset is an indoor mapping of an
abandoned multi-floor hospital in Pittsburgh, where it is
particularly challenging due to long corridors with visually-
degraded features [49]. In particular, we use a long corridor
spanning 282 m with a localization radius of 8 m, where the
database and query images are collected from 2 opposing
viewpoints (forward & backward direction). The database
and query set contain 65 and 101 images, respectively.

b) Laurel Caverns: This subterranean dataset consists
of images collected using a handheld payload [49]. The low
illumination scenarios and lack of rich visual features make
this dataset particularly challenging. The opposing viewpoint
of the database and query images adds additional complexity
to the strong distribution shift. We use a 102 m trajectory
with a localization radius of 8 m, where the database and
query sets contain 141 and 112 images, respectively.

c) Nardo-Air: This is a GNSS-denied localization
dataset collected using a 100◦ FoV downward-facing camera
on board a hexacopter flying at 10 m/s and an altitude of 50
m across a grass-strip runway named Nardo. The reference
database comprises 102 images obtained from a Google
Maps TIF satellite image, while the query set contains 71
drone-collected imagery. The perceptual aliasing at the end
of the runway and non-typical vegetative features combined
with a long time shift make this dataset challenging. The -
R variant of this dataset indicates rotation where the drone
imagery is rotated to match the satellite image orientation.
We use a 700 m trajectory spanning across a square kilometer
area, where the localization radius is 60 m.

d) VP-Air: This aerial VPR dataset consists of 2,706
database-query image pairs and 10,000 distractors collected
at 300 m altitude with a downward-facing camera on an
aircraft [50]. The dataset spans over 100 km, encompassing
various challenging landscapes such as urban regions, farm-
lands, and forests. We use a localization radius of 3 frames.

e) Mid-Atlantic Ridge: We construct this dataset using
the overlapping sequences of an underwater visual local-
ization dataset [51]. It presents OOD challenges including

seabed objects, low illumination, and appearance shifts over
a long time period (2015 vs. 2020). The dataset contains 65
database images and 101 query images, where the trajectory
spans 18 m and the localization radius is 0.3 m.
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